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Laboratoire Louis Ńeel†, CNRS, BP 166X, 38042 Grenoble Cédex, France
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Abstract. The Thompson scattering of x-rays is a direct probe for the electronic charge
distribution of atoms. It should then be useful for determining types of ordering which
involve a periodical asphericity of the atoms inside a crystal. We focus on the case of the
periodical multiaxial orientation of the 4f shells in a rare-earth compound. Using the Stevens
equivalent-operator method, the formalism of the multipolar scattering is here developed within
the ground-state multiplet of the rare-earth ion. It allows one to consider proper 4f wave
functions, accounting for the various interactions present in the system, and to calculate the
quadrupolar, octupolar and dodecapolar contributions to the scattering. In order to validate this
x-ray technique, we propose its application to compounds presenting magnetic orderings which
coincide with multiaxial orbital arrangements.

1. Introduction

In relation with the development of high flux x-ray sources, diffraction experiments giving
details of the electronic charge distribution may be envisaged. For instance, it brings the
opportunity of measuring weak Bragg reflections due to a periodical aspherical charge
density. In this regard, first diffraction experiments were carried out on holmium, as
early as the late sixties, by Keating [1]. However, this work found little continuity,
presumably in relation with the intrinsically weak signal and the difficulties of the
analysis.

In the disordered phase of rare-earth compounds, the 4f electronic distribution reflects the
point symmetries of the lattice. The pair interactions between the 4f shells drive orderings
in which their electronic density no longer respects the initial symmetries: the dominant
modification of the asphericity is described by additional quadrupolar components. If the
lattice translational symmetries are preserved, the arrangement is called ferroquadrupolar.
This (q = 0) order is accompanied by a macroscopic lattice distortion, according to the
strength of the magnetoelastic couplings. Such an arrangement is generally the consequence
of a collinear magnetic ordering, but it can also result from a cooperative Jahn–Teller
effect, or may spontaneously develop due to strong quadrupolar pair-interactions [2]. This
is, for instance, the case of the CsCl-type compound TmCd, which displays a phase of
pure ferroquadrupolar order, the rare-earth magnetic moment remaining zero at all sites
[3].

Another type of ordering, in some way reminiscent of the antiferromagnetic order,
consists of an arrangement of the quadrupoles with a periodicity which differs from the
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crystallographic one. Such an arrangement, called antiferroquadrupolar, also derives from
a magnetic order or from strong antiferroquadrupolar couplings.

Actually, an antiferroquadrupolar arrangement, described by only (q 6= 0) wave vectors,
has no direct macroscopic signature. As for the antiferromagnetic order, the ideal probe
should be microscopic, but neutron diffraction is of little interest as one considers the
scattering by an electronic charge distribution. However, attempting to overcome this
limitation of the neutron diffraction, different techniques have been developed.

An analogue of the Keating experiment has been carried out using neutron scattering,
probing the asphericity of the magnetization density through the periodical form factor
[4]. The disadvantage of this technique lies in the non-trivial relation between charge and
magnetic densities.

Magnetic neutron diffraction has been used in order to characterize the antiferro-
quadrupolar phase of the cubic CeB6 compound, taking advantage of the ferrimagnetic
structure induced by applying a magnetic field [5]. Indeed, this magnetic field induces
different paramagnetic moments on the Ce sites which are no longer equivalent in the an-
tiferroquadrupolar phase. However, this is again an indirect technique which requires an
external stress and does not unambiguously reveal the quadrupolar structure. This latter
has to be deduced from the ferrimagnetic structure, which does not insure a unique deter-
mination. Up to now, the real nature of the quadrupolar order of CeB6 remains an open
question (see [6]). In particular, to which of the cubic representations,03 or 05, the ordered
quadrupolar components belong is not yet answered.

In the hexagonal UPd3 compound, Walkeret al [7] have analysed the outbreak of
tiny neutron diffraction peaks as resulting from periodical displacements of the atoms
in relation with a quadrupolar ordering. However, as soon as the quadrupolar structure
preserves the ordered sites as symmetry inversion centres, such a periodical displacement
mode cannot result from the quadrupolar order alone. It requires a pre-existing lattice
instability, which manifests itself in coincidence with the quadrupolar ordering, as an
additional symmetry breaking. Therefore, such a method cannot be regarded as a general
probe for antiferroquadrupolar orderings.

Other antiferroquadrupolar structures have been assumed to exist in rare-earth
compounds as PrPb3, TmGa3 [8] or TmTe [9]. In these compounds, however, the actual
quadrupolar structures are not unambiguously known. Although it is an intrinsically weak
phenomenon, the x-ray diffraction by electric quadrupoles appears as the most direct
technique for solving many of these questions.

In order to validate this technique, we propose to verify it experimentally in normal
rare-earth systems, for which the multiaxial magnetic structures, thus the quadrupolar
ones, are well characterized. Indeed, the direct use of x-ray diffraction on the above
mentioned rare-earth systems appears rather delicate, both from technical and fundamental
points of view. PrPb3 orders below 0.3 K and the presumed antiferroquadrupolar range
of TmGa3 is only 0.04 K wide, immediately aboveTN . In the case of CeB6, the
Kondo coupling complicates the analysis and the same is valid for TmTe, where a change
of valence occurs. The advantage of using a multiaxial magnetic structure is that the
coexisting quadrupolar arrangement can be deduced, once the magnetic structure has
been unambiguously determined from neutron diffraction measurements (section 2). One
has then an archetype of antiferroquadrupolar structure, for which the location of the
quadrupolar diffraction peaks is perfectly determined and their intensities predictable within
a microscopic model (section 3). Reciprocally, the technique would also be valuable for
demonstrating the multiaxial character of spontaneous magnetic structures, without need of
an external stress.
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2. Magnetic and quadrupolar structures

The essential point is here to establish the connection between a given multiaxial
antiferromagnetic structure and the coexisting quadrupolar structure. Even in the
hypothetical absence of quadrupolar couplings, a magnetic ordering would be accompanied
by the development of quadrupolar components on the magnetic sites (except, obviously,
for systems with zero total orbital moment). This is a direct consequence of the local
magnetic symmetry-lowering. There is then a single quadrupolar arrangement compatible
with the observed magnetic structure (this is not, however, a one-to-one relation, since the
same quadrupolar arrangement may correspond to several magnetic structures). In the case
of isotropic magnetic exchange, this particular structure stabilizes because the associated
quadrupolar arrangement is the most favourable one with regard to the quadrupolar couplings
[10].

Before developing the relation between the magnetic structure and the quadrupolar
arrangement, it may be useful to recall the fundamentals regarding the multiaxial magnetic
structures and the description of the quadrupolar moments in rare-earth systems.

2.1. Magnetic high-symmetry structures

We consider the case of structures developing spontaneously on a simple cubic lattice
of magnetic ions and restrict ourselves to the ones for which the magnetic sites remain
equivalent in the ordered phase. To fulfil the conditions imposed by the crystalline-electric-
field anisotropy, the magnetic moments are along directions within an exclusive〈1 0 0〉,
〈1 1 0〉 or 〈1 1 1〉 cubic star. The eigenstates describing the ions at two distinct sites can then
be deduced one from another using a cubic point-group symmetry. One of the consequences
is that the amplitude of the magnetic moment is the same on all sites. Such structures
represent, at least at low temperatures, the majority of the antiferromagnetic orderings
observed in simple-cubic systems.

In order to detail the relation between the magnetic and quadrupolar structures, we
further reduce the scope of the discussion to magnetic structures with a period equal to
or twice the cubic lattice along each of its three edges. Such magnetic structures are
described using wave vectors from the〈1/2 0 0〉, 〈1/2 1/2 0〉 and 〈1/2 1/2 1/2〉 stars.
Minimizing the bilinear energy requires the structure to involve a unique star of wave
vectors, in correspondence with the maximum of the bilinear coupling dispersion curve.
One should then consider the spontaneous structures exclusively based on the〈1/2 0 0〉 or
〈1/2 1/2 0〉 stars. Note that the〈1/2 1/2 1/2〉 star reduces to a single branch and is not
compatible with a multiaxial ordering. These so-called high-symmetry structures have been
exhaustively listed in [10] and the literature provides numerous examples of their existence.
Their Fourier description needs a maximum of three real components, perpendicular to each
other in order to keep the moment amplitude constant from site to site. The magnetic
moment at sitej , located byRj , is expressed as

〈M〉j =M1 eik1·Rj +M2 eik2·Rj +M3 eik3·Rj (1)

wherek1, k2 andk3 are the three independent branches of the wave vector star andM1,
M2 andM3 the respective Fourier components.

2.2. Quadrupolar operators

Excluding the existence of an electric dipole, the quadrupolar moments are the lowest-order
description of a charge distribution’s asphericity. The first and second columns of table 1
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Table 1. The quadrupolar operators and their Stevens’ equivalents (after [11] and [12]). The
summations are over the 4f electrons,αJ is the Stevens multiplying factor and〈r2〉 the 4f
second-order radial integral.

Cartesian coordinates Polar coordinates Equivalent|J, Jz〉 operator

Q0
2 =

∑
j 3z2

j − r2
j Q0

2 =
∑
j r

2
j (3 cos2 θj − 1) αJ 〈r2〉[3J 2

z − J (J + 1)] = αJ 〈r2〉O0
2

Q2
2 =

∑
j x

2
j − y2

j Q2
2 =

∑
j r

2
j sin2 θj (cos2 ϕj − sin2 ϕj ) αJ 〈r2〉[J 2

z − J 2
y ] = αJ 〈r2〉O2

2

Qxy =
∑
j xj yj Qxy =

∑
j r

2
j sin2 θj cosϕj sinϕj αJ 〈r2〉

[
JxJy + JyJx

2

]
= αJ 〈r2〉Pxy

Qyz =
∑
j yj zj Qyz =

∑
j r

2
j sinθj sinϕj cosθj αJ 〈r2〉

[
JyJz + JzJy

2

]
= αJ 〈r2〉Pyz

Qzx =
∑
j xj zj Qzx =

∑
j r

2
j sinθj cosϕj cosθj αJ 〈r2〉

[
JzJx + JxJz

2

]
= αJ 〈r2〉Pzx

give the classical expressions of the five quadrupolar moments in terms of Cartesian and
polar coordinates.

In a quantum description of the atom, the quadrupolar components become operators
acting, through the electron coordinates, on theN -electron wave function. Using an
N -electron determinantal wave function implies extremely tedious calculation [1] and is
not common in 4f magnetism. Indeed, the atomic configuration of lowest energy is usually
well described according to Hund rules. Thus the atomic state may be described using the
multiplet representation associated with the total electronic angular momentumJ . The
quadrupolar operators are then expressed using momentum operators, according to the
Stevens equivalent-operator method [11]. The correspondence between theN -electron and
the |J, Jz〉 quadrupolar operators is detailed in table 1. It is worth noting that the operator
equivalence is actually based on the correspondence between angular operators, acting on
the N -electron wave functions, and momentum operators, acting on|J, Jz〉 states. The
Stevens multiplying factorαJ insures the equality between a quadrupolar matrix element
over a|J, Jz〉 state and its counterpart over the electron angular wave functions. The radial
part of the quadrupolar operators, which is separated from the angular part in the polar
expressions of table 1, acts identically on all the electron radial wave functions. Thus, it
reduces to the〈r2〉 factor, which represents the integral ofr2 over the 4f electron radial
wave function and is unaffected by the asphericity.

As only 4f shells are considered here, i.e. for an electronic orbital momentuml = 3, the
full description of the atomic asphericity is achieved using distribution operators up to the
sixth order. Starting from a real combination of spherical harmonics, fourth (n = 4) and
sixth (n = 6) order multipolar operators may be defined, as well as theirOm(c,s)

n Stevens
equivalent operators [12]:

O0
n ≡ Cn

∑
j

Y 0
n (θj , ϕj )

Omc
n ≡ Cn

1√
2

∑
j

[Y−mn (θj , ϕj )+ (−1)mYmn (θj , ϕj )]

Oms
n ≡ Cn

i√
2

∑
j

[Y−mn (θj , ϕj )− (−1)mYmn (θj , ϕj )]

(2)

where the summations are over the 4f electrons,m > 0, C4 = 16
3

√
π and C6 =

(32/
√

13)
√
π . The |J, Jz〉 expressions for theOm(c,s)

n operators may be written using the
spherical harmonics equivalent operators which have been listed by Buckmaster in [13].
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2.3. From the magnetic to the quadrupolar structure

In case of a rare-earth ion located at a site of cubic symmetry, all the expectation values
of the quadrupolar operators cancel. However, as soon as the system orders magnetically,
the local symmetry is no longer cubic. One can consider the 4f shell as being under the
influence of both a cubic environment and a mean magnetic field. For the high-symmetry
magnetic structures, this field will either act along a fourfold, a twofold or a threefold axis
(section 2.1). The new magnetic point group contains all elements of the cubic point group
which preserves this field, including the elements which associate time reversal with a cubic
space transformation. In addition to the magnetic moment, some quadrupolar components
should develop in agreement with the new local symmetry. The quadrupolar operators,
acting only through the electron coordinates, are insensitive with regard to time reversal.
Thus, to determine the ordered quadrupolar components, one has only to consider the cube’s
symmetry subgroup preserving the local field axis, i.e. the magnetic moment axis.

In the case of a magnetic structure with moments along fourfold axes, the local cube’s
symmetry subgroup to be considered is D4h. At a givenj site located byRj , let us choose
a local (̂xj , ŷj , ẑj ) trihedron with, asz-axis, the magnetic moment direction, thex- and
y-axes being taken along the two other edges of the cube. One observes that the five-
dimensional quadrupolar representation is reducible into three one-dimensional,{(3z2− r2),
(xy), (x2 − y2)}, and one two-dimensional, (yz, zx), irreducible representations. However,
among the one-dimensional representations, only one is fully symmetric and corresponds to
(3z2− r2). Thus, in terms of Stevens equivalent operators, the only quadrupolar component
preserved in all symmetry operations is〈O0

2〉. This component is then the only one having
non-zero value as result of the magnetic order. Obviously, in agreement with the already
mentioned assumptions, this quadrupole will have the same statistical valueQ0 = 〈O0

2〉 on
all sites.

For a general description of the quadrupolar structure, one has to expressẑj on the (̂a,
b̂, ĉ) trihedron of the cubic crystal:̂zj = zjaâ + zjbb̂ + zjcĉ. This yields the following
expressions for the quadrupolar components on the (â, b̂, ĉ) trihedron:

〈O0
2〉j = 1

2[3z2
jc − 1]Q0

〈O2
2〉j = 1

2[z2
ja − z2

jb]Q0

〈Pαβ〉j = 0 (αβ = ab, bc, ca).
(3)

In the case of a magnetic structure with moments along threefold axes, the local cube’s
symmetry subgroup to be considered is D3d. The localz-axis is again chosen along the
magnetic moment directionŝzj ; thex-axis is, for instance, taken in one of the mirror planes
containing thez-axis. The quadrupolar representation reduces here into a one-dimensional,
(3z2−r2), and two two-dimensional,{(xy, x2−y2), (zx, yz)} irreducible representations. As
(3z2−r2) is preserved in all the symmetry transformations, the only quadrupolar component
which may order, with statistical valueQ0, is againO0

2. Back to the cube’s axes, the
corresponding quadrupolar components read as:

〈O0
2〉j = 0 〈O2

2〉j = 0

〈Pαβ〉j = 1
2[zjαzjβ ]Q0 (αβ = ab, bc, ca).

(4)

The last case to be considered is the one of a magnetic moment along a twofold axis.
Then, the cube’s symmetry subgroup to be considered is D2h. Taking thez-axis along the
moment directionẑj , choosing they-axis along the perpendicular cube’s edge, one may
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define a local (̂xj , ŷj , ẑj ) trihedron at anyj site:

ẑj = zjaâ+ zjbb̂+ zjcĉ
ŷj = 2(zjbzjcâ+ zjczja b̂+ zjazjbĉ)
x̂j = ŷj × ẑj .

On this trihedron, one observes that the quadrupolar representation reduces into five one-
dimensional representations,{(3z2− r2), (x2− y2), (xy), (yz), (zx)}. Both (3z2− r2) and
(x2−y2) correspond to the fully symmetric representation and two quadrupolar components,
O0

2 andO2
2, are preserved in all the D2h transformations. Thus the ordered quadrupoles

may be represented by two scalarsQ0 = 〈O2
2〉 andQ1 = 〈O2

2〉. Expressing the quadrupolar
moments on the cube’s trihedron yields:

〈O0
2〉j = 1

2[3z2
jc − 1]Q0+ 6[z2

jc(z
2
jb − z2

ja)
2− z2

jaz
2
jb]Q1

〈O2
2〉j = 1

2[z2
ja − z2

jb]Q0+ 2[z6
ja − z6

jb − 3(z4
ja − z4

jb)+ 2(z2
ja − z2

jb)]Q1

〈Pαβ〉j = 1
2[zjαzjβ ]Q0− 2zjαzjβ [2(z4

jα + z4
jβ)− 4(z2

jα + z2
jβ)+ 5z2

jαz
2
jβ + 2]Q1

(αβ = ab, bc, ca).

(5)

As an illustration for the use of these relations between the magnetic and quadrupolar
structures, let us consider the simple example of the triple-k magnetic structure stabilized
in the NdZn compound [14] (figure 1(a)). The wave vectors are the three independent
branches of the〈1/2 0 0〉 star and the moments point along threefold axes. The normalized
magnetic structure is easily expressed as:

ẑj = 1√
3
(eik1·Rj â+ eik2·Rj b̂+ eik3·Rj ĉ)

wherek1 = [1/2 0 0], k2 = [0 1/2 0] andk3 = [0 0 1/2] (in 2π/a units). Using (4) then
yields:

〈O0
2〉j = 0 〈O2

2〉j = 0

〈Pab〉j = Q0
eiq3·Rj

6
〈Pbc〉j = Q0

eiq1·Rj

6
〈Pca〉j = Q0

eiq2·Rj

6

where the quadrupolar wave vectors are

q1 = k2+ k3 = [0 1/2 1/2]

q2 = k3+ k1 = [1/2 0 1/2]

q3 = k1+ k2 = [1/2 1/2 0].

The quadrupolar structure is then of the antiferroquadrupolar type, with a periodicity which
differs from the magnetic one, the propagation vectors belonging to the〈1/2 1/2 0〉 star
instead of〈1/2 0 0〉. In case of neodymium, the StevensαJ factor is negative and the
electronic distribution has a negative quadrupolar moment along the local quantization axis.
Such a distribution may be crudely represented as a uniformly dense sphere squeezed along
its z diameter. This has been used for figure 1(b), where this05 antiferroquadrupolar
structure is represented. For this structure, one should expect quadrupolar reflections for
scattering vectors obeying the equationQ = H − qµ, whereH belongs to the crystal
reciprocal lattice andµ stands for 1, 2 or 3. Whether the corresponding diffraction peaks
may actually be measured is answered in the following section.
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Figure 1. (a) Triple-k magnetic structure of NdZn. (b) The associated antiferroquadrupolar
structure.

3. Multipolar x-ray scattering

We consider the simple Thompson scattering of x-rays by the electronic cloud of an atom.
Dropping the electronic scattering multiplying factor, the scattering amplitude reduces to
the Fourier transform of the electron distribution over the atomic state|a〉. For a scattering
vectorQ, this scattering amplitude is written

A(Q) = 〈a|
∑
j

ei(Q·rj )|a〉 (6)

where the indexj refers to the electrons of the atom, located atrj .
In the systems which are here of interest, the rare-earth ions are at sites staying as

inversion centres, even in the presence of magnetic order. Indeed, a high-symmetry magnetic
structure necessarily preserves the inversion symmetry (see equation (1)). Consequently,
the expression of the scattering amplitude reduces to

A(Q) = 〈a|
∑
j

cos(Q · rj )|a〉.

In the same way, the inversion symmetry rules out the existence of any polar vector, in
particular, an electric dipole, but also a periodic displacement of the atoms, which would
be described by a displacement vector at each site. This is an important remark as then, the
observation of x-ray satellites cannot be ascribed to a periodically distorted lattice.

To express the scattering amplitudeA(Q) in terms of multipolar operators acting on the
|a〉 state, one starts by expanding cos(Q ·r) in spherical harmonics. Taking thez axis along
the scattering vectorQ, the expansion reduces to Legendre polynomials of even order. This
expansion is summarized in table 2, where the non-zero terms are given up to the sixth
order. Higher order terms are useless since their angular integrals over 4f wave functions
cancel.

Using this expansion, the scattering amplitude may be reexpressed as a sum of four
terms:

A(Q) = A0(Q)+ A2(Q)+ A4(Q)+ A6(Q)
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Table 2. Expansion, to the sixth order (n = 0, 2, 4, 6), of cos(Q.r cosθ) in terms of Legendre
polynomials. θ is the angle between the scattering vectorQ and the position vectorr of the
j th electron.

n Polynomial Radial multiplierfn(Qr)

0 1
sin(Qr)

Qr

2 3 cos2 θ − 1
5

2

[
3 cos(Qr)

Q2r2
+
(

1− 3

Q2r2

)
sin(Qr)

Qr

]
4 35 cos4 θ − 30 cos2 θ + 3

9

8

[(
10

Qr
− 105

Q3r3

)
cos(Qr)

Qr
+
(

105

Q4r4
− 45

Q2r2
+ 1

)
sin(Qr)

Qr

]
6 231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5

13

16

[(
10 395

Q5r5
− 1260

Q3r3
+ 21

Qr

)
cos(Qr)

Qr

+
(

10 395

Q6r6
+ 4725

Q4r4
− 210

Q2r2
+ 1

)
sin(Qr)

Qr

]

where

A0(Q) = 〈a|
∑
j

f0(Qrj )|a〉

A2(Q) = 〈a|
∑
j

f2(Qrj )(3 cos2 θj − 1)|a〉

A4(Q) = 〈a|
∑
j

f4(Qrj )(35 cos4 θj − 30 cos2 θj + 3)|a〉

A6(Q) = 〈a|
∑
j

f6(Qrj )(231 cos6 θj − 315 cos4 θj + 105 cos2 θj − 5)|a〉.

A0(Q), which includes no angular operator, is the usual scattering amplitude arising from
a spherical atom. It is maximum at zero scattering angle, where it is equal to the number
of electrons, and is the same on all the identical rare-earth sites. The other terms, which
involve angular operators, represent the aspherical contributions to the scattering amplitude.
Consequently, in their definition, the sum over the indexj can be restricted to the unfilled
4f shell. In contrast withA0(Q), these terms may be periodical, according to the multipolar
structure. This should give rise to characteristic interferences resulting in additional Bragg
peaks of multipolar origin. The Stevens equivalent-operators method readily applies to these
expressions of the second, fourth and sixth order scattering amplitudes, where the radial and
angular dependencies are conveniently separated. Comparing the operator definingA2(Q)
with the quadrupolar operators of table 1, one finds it may be identified withQ0

2, apart from
the radial dependence wheref2(Qrj ) replacesr2

j . Thus, the appropriate Stevens equivalent
operator is immediately deduced by replacing〈r2〉 byF2(Q), the 4f radial integral off2(Qr):

A2(Q) = αJF2(Q)〈a|O0
2|a〉.

A2(Q) is then directly related to the quadrupolar moment along the scattering vectorQ
and may be referred to as the quadrupolar scattering amplitude. Similarly, introducing the
4f radial integrals,F4(Q) andF6(Q), of f4(Qr) andf6(Qr), one may rewrite the fourth
(octupolar) and sixth order (dodecapolar) scattering amplitudes as

A4(Q) = βJF4(Q)〈a|O0
4|a〉

A6(Q) = γJF6(Q)〈a|O0
6|a〉
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whereβJ and γJ are the fourth and sixth order Stevens multiplying factors and|a〉 the
atomic state, expressed using the|J, Jz〉 base.

Note that the expectation values for theO0
2, O0

4 andO0
6 operators may be rather easily

determined within a microscopic magnetic model. In view of a quantitative description of
the expected diffraction phenomena, this is a substantial advantage of the|J, Jz〉 base with
regard to theN -electron wave functions.

TheF2(Q), F4(Q) andF6(Q) radial integrals act as multipolar scattering form factors.
They have been computed using Hartree–Fock (HF) 4f radial wave functions for tripositive
rare-earth ions, as defined in [15]. In figures 2, 3 and 4, these multipolar form factors are
respectively plotted versus sinθ/λ. In contrast with the spherical scattering amplitude, the
multipolar ones are maximum at non-zero scattering angle. This agrees with the calculations
of Keating, who started fromN -electron determinantal wave functions in the special case of
Ho3+ [1]. Due to their similar, localized, 4f radial distributions, the different rare-earth ions
have their maximum quadrupolar scattering amplitude at about the same scattering angle

(sinθ/λ ≈ 0.5 Å
−1

). The maxima of the octupolar and dodecapolar scattering amplitude are
further shifted towards higher scattering angles. Non- relativistic HF radial wave functions
have here been used for benefit of a simple analytical form. Relativistic effects are not
expected to dramatically affect the magnitude of the scattering phenomena but, due to the
more expanded 4f radial distribution, to result in a slight shift of the maximum amplitude
toward lower scattering angles [16].

Figure 2. Calculated quadrupolar form factorsαJ F2(Q), as a function of sinθ/λ, for tripositive
rare-earth ions. Some curves are displayed in the inset at a more appropriate scale.

For a simple evaluation of the quadrupolar diffraction peak intensities, let us consider
a rare-earth ion with its maximum quadrupolar moment along the scattering vector, that
is 〈O0

2〉 = J (2J − 1). For a givenQ value, the corresponding maximum quadrupolar
scattering amplitude is thenA2(Q) = αJF2(Q)J (2J − 1). Selecting the scattering vectors
maximizingF2(Q), we have plotted the maximum quadrupolar scattering amplitude which
may be expected for the various rare-earth ions (figure 5, in absolute values). In the most
favourable case of Tb3+, this scattering amplitude reaches a little less than 0.35 Thompson
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Figure 3. Calculated octupolar form factorsβJ F4(Q), as a function of sinθ/λ, for tripositive
rare-earth ions. Some curves are displayed in the inset at a more appropriate scale.

Figure 4. Calculated dodecapolar form factorsγJ F6(Q), as a function of sinθ/λ, for tripositive
rare-earth ions.

electron contribution. One may then estimate the maximum ratio between a quadrupolar and
a lattice reflection (this latter for zero scattering angle):Rmax = (A2(Qmax)/(Z − 3))2 =
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Figure 5. Maximum absolute value of the quadrupolar scattering amplitude for the rare-earth
tripositive ions.

(0.35/62)2 ≈ 3× 10−5. This quadrupolar diffraction phenomenon, which appears three
or four orders of magnitude larger than the non-resonant magnetic x-ray diffraction [17],
seems to be perfectly measurable. However, it has to be stressed that this ratio is the very
maximum which may be expected. In practice, one will have to deal with systems for
which, due to thermal disorder or/and crystalline electric field, the quadrupolar moments
remain much smaller than their maximum value.

For practical use, the expression for the quadrupolar scattering amplitude needs to be
written for any scattering vector referred to the lattice coordinate system. This requires the
scattering amplitude to be transformed into the (â, b̂, ĉ) cube’s trihedron, which calls in
play the four additional quadrupolar operators:

A2(Q) = αJF2(Q)

[
1

2

(
3
Q2
c

Q2
− 1

)
〈O0

2〉 +
3

2

(
Q2
a −Q2

b

Q2

)
〈O2

2〉

+ 6

(
QaQb

Q2
〈Pab〉 + c.p.

)]
. (7)

In this expression, the values of the quadrupolar components, over the state|a〉, have been
replaced by the statistical ones. This is the only expression of practical interest, since the
total scattered wave will necessarily obey the statistics of the many scattering centres of the
crystal.

One may also notice that the expressions of the multiplying factors preceding the
quadrupolar operators are very similar to those of the quadrupolar operators themselves.
Indeed, this is a common consequence of the symmetries of the Thompson scattering.
If one considers an experiment in which both the crystal and the scattering vector are
transformed according to a crystal point symmetry operation, the scattering amplitude should
be unchanged. Thus, these multiplying factors, which are functions of the scattering vector,
should transform exactly in the same way as their corresponding quadrupolar operators.

Equivalent expressions have been written for the octupolar and dodecapolar scattering
amplitudes and are reported in the appendix. Thus one may as well compute the fourth
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and sixth order contributions to the scattering amplitude. However, in the cubic rare-earth
systems, the expectation values for the octupolar and dodecapolar operators mainly result
from the crystalline electric field. Consequently, the main contribution to the octupolar and
dodecapolar scattering amplitude is constant from site to site and the interference, outside
the Brillouin-zone centre, between quadrupolar and higher order multipolar scattering
amplitudes may be neglected, this, at least in a first approximation, for scattering angles
around the maximum of the quadrupolar scattering amplitude. On a site of cubic symmetry,
unlike the octupolar and dodecapolar operators, the quadrupolar operator expectation values
result exclusively from pair interactions, dipolar or quadrupolar. Therefore, they may
develop with a periodicity potentially different from the lattice one and result in well
identifiable diffraction peaks.

4. Summary

The explicit relation between the multiaxial magnetic structure and the associated
quadrupolar arrangement has been derived from simple symmetry arguments. Thus
the neutron diffraction determination of a magnetic structure also yields, indirectly, the
quadrupolar structure. This brings the opportunity of experimenting the x-ray quadrupolar
diffraction on well defined quadrupolar arrangements.

In view of this, the Thompson quadrupolar scattering amplitude, as well as the octupolar
and dodecapolar ones, have been expressed using the Stevens equivalent-operator method.
These scattering amplitudes call into play the respective scattering form factors and a
sum of products between multipolar operators and symmetry related combinations of the
scattering vector components. This tight relation between the chosen scattering vector and
the multipolar operators in the scattering amplitude is a means to determine the actual order
parameter, in the case, for instance, of pure antiferroquadrupolar order. Moreover, the use
of the ground state multiplet representation gives way to a computational description of the
scattering phenomena, starting from an accurate microscopic magnetic model, i.e. accounting
for the crystalline electric field and the various pair interactions (see, for example, [18]). In
cubic systems, as a first approximation, such an analysis can be restricted to the quadrupolar
scattering terms since, out from the zone centre, the fourth and sixth order contributions
to the scattering might be neglected. This is reminiscent of the general approximation
used in 4f magnetism, for instance, in magnetoelasticity, the analysis of which is usually
restricted to second order terms. The contribution to the scattering of conduction electrons
of d character may also be neglected. Indeed, the corresponding interference with the
4f quadrupolar scattering should occur at small scattering angles, where the 4f scattering
amplitude is already zero. In brief, and without need of further developing such an accurate
analysis, our estimate of the quadrupolar diffraction intensity drives us to optimistically
consider the outcome of an experimental study.

This needs first the selection of a cubic system suitable for such an experiment. From
the quadrupolar diffraction intensities, expected for the tripositive rare-earth ions, one would
prefer to deal with a system based on terbium, dysprosium or thulium, for the heavy
rare earths, and cerium or praseodymium, for the light ones. This system has to display
multiaxial magnetic structures and should also rule out or, at least, reduce the risk of other
origins for the expected Bragg peaks. Appropriate multiaxial structures are found among
the rare-earth compounds having a simple cubic lattice of magnetic ions and displaying an
antiferromagnetism with wave vectors from the〈1/2 0 0〉 or 〈1/2 1/2 0〉 stars. One might
regard as difficult the determination of the actual origin of the measured diffraction signal,
for scattering vectors corresponding to the quadrupolar periodicity, as this signal could be
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confused with a magnetic one. In the case of a〈1/2 0 0〉 multiaxial magnetic structure, the
occurrence of such a confusion can be immediately rejected, since, as shown by the example
of NdZn’s triple-k structure, the quadrupolar periodicity differs from the magnetic one. This
is however not the case with a〈1/2 1/2 0〉 multiaxial magnetic structure for which the
quadrupolar arrangement has the same periodicity. Nevertheless, as the quadrupolar x-ray
scattering intensities are theoretically several orders of magnitude larger than the x-ray
magnetic scattering intensities, the confusion of these two scattering phenomena cannot be
seriously considered. Actually, the major risk appears to be the confusion with Bragg peaks
arising from periodic ion displacements. As already mentioned, this risk is reduced using
magnetic high-symmetry structures. Such displacements may nevertheless occur as result
of an underlying lattice instability as encountered, for instance, in some rare-earth–silver
systems [19]. In case of doubt, the scattering vector dependence and the thermal variation
of the observed intensities may allow one to identify their actual origin.

Finally, let us put in more concrete terms the search for a favourable candidate. Within
the CsCl-type structure,〈1/2 0 0〉 magnetic wave vectors are found in the RZn or RMg
series [8]. Unfortunately, most of the corresponding magnetic structures are collinear
and multiaxial structures are met only for the unfavourable cases of neodymium based
compounds, NdZn [14] and NdMg [20].

More numerous are the examples of systems displaying multiaxial magnetic structures
based on〈1/2 1/2 0〉 wave vectors. Among them a number are based on favourable rare
earths from the quadrupolar scattering amplitude point of view. For instance, within the
CsCl-type structure, one may consider DyCu [21], DyAg [22] or PrAg [23].

Appendix

General expressions of the octupolar,A4(Q), and dodecapolar,A6(Q), scattering amplitudes
for a scattering vectorQ = (Qa,Qb,Qc) expressed with respect to the cubic lattice
trihedron. βJF4(Q) and γJF6(Q) are, respectively, the octupolar and dodecapolar form
factors. The definitions of theOm(c,s)

n equivalent operators are given in the text (section 2.2,
equations (2)).

A4(Q) = βJF4(Q)[C
0
4(Q)〈O0

4〉 + C1c
4 (Q)〈O1c

4 〉 + C1s
4 (Q)〈O1s

4 〉 + C2c
4 (Q)〈O2c

4 〉
+C2s

4 (Q)〈O2s
4 〉 + C3c

4 (Q)〈O3c
4 〉 + C3s

4 (Q)〈O3s
4 〉 + C4c

4 (Q)〈O4c
4 〉

+C4s
4 (Q)〈O4s

4 〉]
where

C0
4(Q) = (1/8Q4)(35Q4

c − 30Q2Q2
c + 3Q4)

C1c
4 (Q) = (

√
10/4Q4)QaQb(7Q

2
c − 3Q2)

C1s
4 (Q) = (

√
10/4Q4)QbQc(7Q

2
c − 3Q2)

C2c
4 (Q) = (

√
5/4Q4)(Q2

a −Q2
b)(7Q

2
c −Q2)

C2s
4 (Q) = (

√
5/4Q4)2QaQb(7Q

2
c −Q2)

C3c
4 (Q) = (

√
35/
√

8Q4)Qc(Q
3
a − 3QaQ

2
b)

C3s
4 (Q) = (

√
35/
√

8Q4)Qc(3QbQ
2
a −Q3

b)

C4c
4 (Q) = (

√
35/8Q4)(Q4

a − 6Q2
aQ

2
b +Q4

b)

C4s
4 (Q) = (

√
35/8Q4)4QaQb(Q

2
a −Q2

b)
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A6(Q) = γJF6(Q)[C
0
6(Q)〈O0

6〉 + C1c
6 (Q)〈O1c

6 〉 + C1s
6 (Q)〈O1s

6 〉 + C2c
6 (Q)〈O2c

6 〉
+C2s

6 (Q)〈O2s
6 〉 + C3c

6 (Q)〈O3c
6 〉 + C3s

6 (Q)〈O3s
6 〉 + C4c

6 (Q)〈O4c
6 〉

+C4s
6 (Q)〈O4s

6 〉 + C5c
6 (Q)〈O5c

6 〉 + C5s
6 (Q)〈O5s

6 〉 + C6c
6 (Q)〈O6c

6 〉
+C6s

6 (Q)〈O6s
6 〉]

where

C0
6(Q) = (1/16Q6)(231Q6

c − 315Q4
cQ

2+ 105Q2
cQ

4− 5Q6)

C1c
6 (Q) = (

√
21/8Q6)Qa(33Q5

c − 30Q3
cQ

2+ 5QcQ
4)

C1s
6 (Q) = (

√
21/8Q6)Qb(33Q5

c − 30Q3
cQ

2+ 5QcQ
4)

C2c
6 (Q) = −(

√
210/256Q6)(Q2

a −Q2
b)(33Q4

c − 18Q2
cQ

2+Q4)

C2s
6 (Q) = −(

√
210/256Q6)2QaQb(33Q4

c − 18Q2
cQ

2+Q4)

C3c
6 (Q) = (

√
105/
√

128Q6)QaQc(3Q
2
b −Q2

a)(11Q2
c − 3Q2)

C3s
6 (Q) = (

√
105/
√

128Q6)QbQc(3Q
2
a −Q2

b)(3Q
2− 11Q2

c)

C4c
6 (Q) = (

√
7/48Q6)(Q4

a − 6Q2
aQ

2
b +Q4

b)(11Q2
c −Q2)

C4s
6 (Q) = (

√
7/48Q6)QaQb(Q

2
a −Q2

b)(11Q2
c −Q2)

C5c
6 (Q) = (3

√
154/16Q6)QaQc(Q

4
a − 10Q2

aQ
2
b + 5Q4

b)

C5s
6 (Q) = (3

√
154/16Q6)QbQc(Q

4
b − 10Q2

aQ
2
b + 5Q4

a)

C6c
6 (Q) = (

√
231/16

√
2Q6)(Q6

a − 15Q4
aQ

2
b + 15Q2

aQ
4
b −Q6

b)

C6s
6 (Q) = (

√
231/16

√
2Q6)QaQb(3Q

4
a − 10Q2

aQ
2
b + 3Q4

b).
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